49 research outputs found

    Quantifying the effect of aerial imagery resolution in automated hydromorphological river characterisation

    Get PDF
    Existing regulatory frameworks aiming to improve the quality of rivers place hydromorphology as a key factor in the assessment of hydrology, morphology and river continuity. The majority of available methods for hydromorphological characterisation rely on the identification of homogeneous areas (i.e., features) of flow, vegetation and substrate. For that purpose, aerial imagery is used to identify existing features through either visual observation or automated classification techniques. There is evidence to believe that the success in feature identification relies on the resolution of the imagery used. However, little effort has yet been made to quantify the uncertainty in feature identification associated with the resolution of the aerial imagery. This paper contributes to address this gap in knowledge by contrasting results in automated hydromorphological feature identification from unmanned aerial vehicles (UAV) aerial imagery captured at three resolutions (2.5 cm, 5 cm and 10 cm) along a 1.4 km river reach. The results show that resolution plays a key role in the accuracy and variety of features identified, with larger identification errors observed for riffles and side bars. This in turn has an impact on the ecological characterisation of the river reach. The research shows that UAV technology could be essential for unbiased hydromorphological assessment

    Automated identification of river hydromorphological features using UAV high resolution aerial imagery

    Get PDF
    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management

    Using 1st derivative reflectance signatures within a remote sensing framework to identify macroalgae in marine environments

    Get PDF
    Macroalgae blooms (MABs) are a global natural hazard that are likely to increase in occurrence with climate change and increased agricultural runoff. MABs can cause major issues for indigenous species, fish farms, nuclear power stations, and tourism activities. This project focuses on the impacts of MABs on the operations of a British nuclear power station. However, the outputs and findings are also of relevance to other coastal operators with similar problems. Through the provision of an early-warning detection system for MABs, it should be possible to minimize the damaging effects and possibly avoid them altogether. Current methods based on satellite imagery cannot be used to detect low-density mobile vegetation at various water depths. This work is the first step towards providing a system that can warn a coastal operator 6–8 h prior to a marine ingress event. A fundamental component of such a warning system is the spectral reflectance properties of the problematic macroalgae species. This is necessary to optimize the detection capability for the problematic macroalgae in the marine environment. We measured the reflectance signatures of eight species of macroalgae that we sampled in the vicinity of the power station. Only wavelengths below 900 nm (700 nm for similarity percentage (SIMPER)) were analyzed, building on current methodologies. We then derived 1st derivative spectra of these eight sampled species. A multifaceted univariate and multivariate approach was used to visualize the spectral reflectance, and an analysis of similarities (ANOSIM) provided a species-level discrimination rate of 85% for all possible pairwise comparisons. A SIMPER analysis was used to detect wavebands that consistently contributed to the simultaneous discrimination of all eight sampled macroalgae species to both a group level (535–570 nm), and to a species level (570–590 nm). Sampling locations were confirmed using a fixed-wing unmanned aerial vehicle (UAV), with the collected imagery being used to produce a single orthographic image via standard photogrammetric processes. The waveband found to contribute consistently to group-level discrimination has previously been found to be associated with photosynthetic pigmentation, whereas the species-level discriminatory waveband did not share this association. This suggests that the photosynthetic pigments were not spectrally diverse enough to successfully distinguish all eight species. We suggest that future work should investigate a Charge-Coupled Device (CCD)-based sensor using the wavebands highlighted above. This should facilitate the development of a regional-scale early-warning MAB detection system using UAVs, and help inform optimum sensor filter selection.

    Autonomous Systems for the Environmental Characterization of Lagoons

    Get PDF
    This chapter reviews the state of the art in robotics and autonomous systems (RAS) for monitoring the environmental characteristics of lagoons, as well as potential future uses of such technologies that could contribute to enhancing current monitoring programmes. Particular emphasis will be given to unmanned aerial vehicles (UAVs), autonomous under water vehicles (AUVs), remotely operated underwater vehicles (ROVs) and (semi-)autonomous boats. Recent technological advances in UAVs, AUVs and ROVs have demonstrated that high-resolution data (e.g. 0.4 cm imagery resolution) can be gathered when bespoke sensors are incorporated within these platforms. This in turn enables the accurate quantification of key metrics within lagoon environments, such as coral morphometries. For example, coral height and width can now be estimated remotely with errors below 12.6 and 14.7 cm, respectively. The chapter will explore how the use of such technologies in combination could improve the understanding of lagoon environments through increased knowledge of the spatial and temporal variations of parameters of interest. Within this context, both advantages and limitations of the proposed approaches will be highlighted and described from operational, logistical, and regulatory considerations. The chapter will be based on recent peer-reviewed research outputs obtained by the authors

    Modelling a two-dimensional spatial distribution of mycotoxin concentration in bulk commodities to design effective and efficient sample selection strategies

    Get PDF
    Mycotoxins in agricultural commodities are a hazard to human and animal health. Their heterogeneous spatial distribution in bulk storage or transport makes it particularly difficult to design effective and efficient sampling plans. There has been considerable emphasis on identifying the different sources of uncertainty associated with mycotoxin concentration estimations, but much less on identifying the effect of the spatial location of the sampling points. This study used a two-dimensional statistical modelling approach to produce detailed information on appropriate sampling strategies for surveillance of mycotoxins in raw food commodities. The emphasis was on deoxynivalenol (DON) and ochratoxin A (OTA) in large lots of grain in storage or bulk transport. The aim was to simulate a range of plausible distributions of mycotoxins in grain from a set of parameters characterising the distributions. For this purpose, a model was developed to generate data sets which were repeatedly sampled to investigate the effect that sampling strategy and the number of incremental samples has on determining the statistical properties of mycotoxin concentration. Results showed that, for most sample sizes, a regular grid proved to be more consistent and accurate in the estimation of the mean concentration of DON, which suggests that regular sampling strategies should be preferred to random sampling, where possible. For both strategies, the accuracy of the estimation of the mean concentration increased significantly up to sample sizes of 40-60 (depending on the simulation). The effect of sample size was small when it exceeded 60 points, which suggests that the maximum sample size required is of this order. Similar conclusions about the sample size apply to OTA, although the difference between regular and random sampling was small and probably negligible for most sample sizes

    Towards more effective strategies to reduce property level flood risk: standardising the use of Unmanned Aerial Vehicles

    Get PDF
    Effective flood risk management strategies require a detailed understanding of the source, extent and impact of flooding. Unmanned Aerial Vehicles (UAVs) enable detailed and accurate data collection that can be used to determine flood source, extent, impact and the presence of property level flood resistance measures. This paper draws on the practical experience of the authors including the use of UAVs during flood events. We highlight the potential uses of UAVs in flood risk management activities and the associated challenges. The impact of a flooding event will also be dependent on how well an area is prepared in terms of community and property level resistance and resilience measures. We have looked at potential reasons why there is not a greater uptake of property level resistance and resilience measures. It is clear that a standardised approach is required if UAVs are to fulfil their potential within flood risk management activities. We have identified five pillars of standardisation that underpin an overarching, purpose-driven, cost-effective systems-based approach to the use of UAVs in flood risk management. These are as follows: (P1) deployment, data collection and flight-related regulatory requirements; (P2) data processing, data merging and outputs; (P3) the introduction and use of innovative approaches and technological integration; (P4) use of outputs for public engagement and (P5) policy development and governance. We consider that the proposed approach will maximise cost-effective information gathering, standardise the way processed outcomes are generated and provide the basis for comparable and robust flood risk information that is based on a single coherent methodolog

    The use of geostatistics for hydromorphological assessment in rivers

    Get PDF
    Assessment of river rehabilitation and restoration projects, as well as the monitoring of morphological changes in rivers requires collection of hydromorphological parameter data (i.e. depth, velocity and substrate). Field data collection is highly time and cost consuming and thus, effective and efficient monitoring programmes need to be designed. Interpolation techniques are often used to predict values of the variables under study at non measured locations. In this way, it is not necessary to collect detailed data sets of information. The accuracy of these predictions depends upon (i)the method used for the interpolation and/or extrapolation procedure and (ii) the sampling strategy applied for the collection of data. Even though the design of effective sampling strategies are of crucial importance when applying interpolation techniques, little work has been developed to determine the most effective way to collect hydromorphological data for this purpose. This project aimed to define a set of guidelines for effective and efficient hydromorphological data collection in rivers and relate this to the type of river site that is being sampled and to the objective for which the data are being collected. The project is structured in three main sections: spatial problem, the scaling problem and the temporal problem. Spatial problem refers to the location and number of points that need to be collected. Scaling problems focus on the study of the river length that needs to be sampled to characterise the spatial variability of a river site, whilst temporal problems determine how often a river site needs to be sampled to characterise the temporal variability associated with changes in discharge. Intensive depth data sets have been collected at a total of 20 river sites. These data sets have been used to investigate the spatial, temporal and scaling problems through geostatistical theory.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    High resolution orthomosaics of African coral reefs: a tool for wide-scale benthic monitoring

    Get PDF
    Coral reefs play a key role in coastal protection and habitat provision. They are also well known for their recreational value. Attempts to protect these ecosystems have not successfully stopped large-scale degradation. Significant efforts have been made by government and research organizations to ensure that coral reefs are monitored systematically to gain a deeper understanding of the causes, the effects and the extent of threats affecting coral reefs. However, further research is needed to fully understand the importance that sampling design has on coral reef characterization and assessment. This study examines the effect that sampling design has on the estimation of seascape metrics when coupling semi-autonomous underwater vehicles, structure-from-motion photogrammetry techniques and high resolution (0.4 cm) underwater imagery. For this purpose, we use FRAGSTATS v4 to estimate key seascape metrics that enable quantification of the area, density, edge, shape, contagion, interspersion and diversity of sessile organisms for a range of sampling scales (0.5 m × 0.5 m, 2 m × 2 m, 5 m × 5 m, 7 m × 7 m), quadrat densities (from 1–100 quadrats) and sampling strategies (nested vs. random) within a 1655 m2 case study area in Ponta do Ouro Partial Marine Reserve (Mozambique). Results show that the benthic community is rather disaggregated within a rocky matrix; the embedded patches frequently have a small size and a regular shape; and the population is highly represented by soft corals. The genus Acropora is the more frequent and shows bigger colonies in the group of hard corals. Each of the seascape metrics has specific requirements of the sampling scale and quadrat density for robust estimation. Overall, the majority of the metrics were accurately identified by sampling scales equal to or coarser than 5 m × 5 m and quadrat densities equal to or larger than 30. The study indicates that special attention needs to be dedicated to the design of coral reef monitoring programmes, with decisions being based on the seascape metrics and statistics being determined. The results presented here are representative of the eastern South Africa coral reefs and are expected to be transferable to coral reefs with similar characteristics. The work presented here is limited to one study site and further research is required to confirm the findings

    Monetising the impacts of waste incinerators sited on brownfield land using the hedonic pricing method

    Get PDF
    In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation

    The use of unmanned aerial vehicles to estimate direct tangible losses to residential properties from flood events: A case study of Cockermouth following the Desmond storm

    Get PDF
    Damage caused by flood events is expected to increase in the coming decades driven by increased land use pressures and climate change impacts. The insurance sector needs accurate and efficient loss adjustment methodologies for flood events. These can include remote sensing approaches that enable the rapid estimation of (i) damage caused to property as well as (ii) the number of affected properties. Approaches based on traditional remote sensing methods have limitations associated with low-cloud cover presence, oblique viewing angles, and the resolution of the geomatic products obtained. Unmanned aerial vehicles (UAVs) are emerging as a potential tool for post-event assessment and provide a means of overcoming the limitations listed above. This paper presents a UAV-based loss-adjustment framework for the estimation of direct tangible losses to residential properties affected by flooding. For that purpose, features indicating damage to property were mapped from UAV imagery collected after the Desmond storm (5 and 6 December 2015) over Cockermouth (Cumbria, UK). Results showed that the proposed framework provided an accuracy of 84% in the detection of direct tangible losses compared with on-the-ground household-by-household assessment approaches. Results also demonstrated the importance of pluvial and, from eye witness reports, lateral flow flooding, with a total of 168 properties identified as flooded falling outside the fluvial flood extent. The direct tangible losses associated with these additional properties amounted to as high as £3.6 million. The damage-reducing benefits of resistance measures were also calculated and amounted to around £4 million. Differences in direct tangible losses estimated using the proposed UAV approach and the more classic loss-adjustment methods relying on the fluvial flood extent was around £1 million—the UAV approach providing the higher estimate. Overall, the study showed that the proposed UAV approach could make a significant contribution to improving the estimation of the costs associated with urban flooding, and responses to flooding events, at national and international levels
    corecore